There are two mysterious looking correspondences involving ADE groups. McKay correspondence between McKay graphs characterizing tensor products for finite subgroups of SU(2) and Dynkin diagrams of affine ADE groups is the first one. The correspondence between principal diagrams characterizing inclusions of hyper-finite factors of type II1 (HFFs) with Dynkin diagrams for a subset of ADE groups and Dynkin diagrams for affine ADE groups is the second one.

I have considered the interpretation of McKay correspondence in TGD framework already earlier

but the decision to look it again led to a discovery of a bundle of new ideas allowing to answer several key questions

of TGD.

Asking questions about M8-H duality at the level of 8-D momentum space led to a realization that the notion of mass is relative as already the existence of alternative QFT descriptions in terms of massless and massive fields suggests (electric-magnetic duality). Depending on choice M4⊂ M8, one can describe p…

I have considered the interpretation of McKay correspondence in TGD framework already earlier

but the decision to look it again led to a discovery of a bundle of new ideas allowing to answer several key questions

of TGD.

Asking questions about M8-H duality at the level of 8-D momentum space led to a realization that the notion of mass is relative as already the existence of alternative QFT descriptions in terms of massless and massive fields suggests (electric-magnetic duality). Depending on choice M4⊂ M8, one can describe p…